
Interactive Computer Graphics
with the UNIX Time-Sharing System

By Thomas E. Ferrin and Robert Langridge

23 October 1978

(Revised: 2 April 1979)

UniEersity of California, San Francisco
Computer Graphics Laboratory

Department of Pharmaceutical Chemistry
School of Pharmacy

San Francisco, California 94143

3>.0

Interactive
with the
System*

h~ Computer Grap lcs
UNIX- Time-Sharing

Thomas E. Ferrin and Robert Langridge,
Computer Graphics Laboratory
Department Of Pharmaceutical Chemistry
School of Pharmacy
University of California,
San Francisco

The UNIX]. t ime-shar ing system is a powerful
and efficient multinser operating system possessing
many unique and attractive advantages. In order to
fully support an interactive graphics facility,
however, several minor extensions were made to
provide the necessary high performance ' rea l - t ime '
envi ronment . These enhancements to the UNIX
system are described together with the
implementation details for the Pic ture Sys tem 2
Graphic Subrout ine Package.

Introduction:
The first application of interactive computer

graphics to molecular structure representation appeared
well over a decade ago and has been the subject of
many excellent reviews, b3 Great advances have been
made in the capabilities of these early graphic systems
and the rapidly decreasing cost of hardware has made
such systems available to many scientific investigators.
Computer science in general has made large strides and
the once elite, large-machine based time-sharing
systems have been refined and improved to the point
where they now use hardware that almost any
laboratory can afford. The advantages of computer
time-sharing are so overwhelming when compared to
dedicated systems that functions which historically were
not compatible with a time-sharing environment (such
as interactive computer graphics) are now being
integrated into these systems.

The Computer Graphics Laboratory at the

* The ideas detailed in this paper were presented on 21 March
1978 at the annual UNIX User's Group Meeting held at Columbia
University, New York.

t UNIX is a trademark of Bell Laboratories.

University of California, San Francisco $ uses the UNIX
operating system to support a high performance
interactive graphics facility for display of three-
dimensional molecular models. The primary interests
are the structures, functions, and interactions of
complex biological molecules, particularly those related
to drug interactions. Many of the structures, such as
proteins and amino acids, are of sufficient size (ca.
100,000 molecular weight) to make the construction of
physical models extremely time consuming and
awkward. As the models become even larger and their
physical weight grows to the order of several kilogratns,
stability becomes a crucial problem. Storage of such

structures is also difficult and models filling a small
room are not uncommon. In addition to these
disadvantages, physical models are difficult to
manipulate with any degree of precision, particularly if
one wishes to make adjustments to an interior region of
the structure. Lastly, emphasis on a particular area of
interest and exclusion of other portions may be
completely impossible with physical models since pieces
of the structure would be left disconnected and
unsupported.

Computer graphics provides solutions to these
and other problems while providing many other
advantages. An even greater benefit is realized when
the observer can play an active role in how he wishes
to view and manipulate the model. Such capabilities
are currently provided only through an interactive
three-dimensional display system such as the Evans &
Sutherland Computer Corporation's Picture System 2. 4

The Picture System 2 (figure 1) is a calligraphic
display system incorporating a matrix arithmetic
processor (MAP) designed specifically for graphics
oriented operations on two- and three-dimensionl:t
data. The data may be translated, rotated and scaled
before it is mapped onto a user definable viewport area
for final display on a 25.5 cm cathode ray tube (P4
phosphor). A specification for the range of allowable
data values creates a window into the data space so that
only the regions of immediate interest are displayed
while all other line segments are clo)ped and hence not
visible. The window specification also includes
information specifying the position of the observer so
that a true perspective transformation can be applied to
any three-dimensional data. Since the viewport
specification includes information for a gradient on

The Universily of Cal#brnia, San Francisco Computer Graphics
Laboratoo, is funded primarily by the National Institutes of Health,
Division of Biotechnology Research Resources and also by the
University of California, Sall Francisco. The director and principal
investigator of the Computer Graphics Laboratory is Professor
Robert Langridge, Professor of Pharmaceutical Chemistry and of
Biochemistry and Biophysics. The computer facility manager is Mr
Thomas Ferrin.

32~

displayed line intensity also, depth cueing through
intensity variation, as welt as picture perspective,
provides realistic two-dimensional representations of
three-dimensional structures. A hardware character
generator is provided for generating any of eight
different sizes of alpha-numeric characters and may also
be programmed by the user for generating special
purpose symbols. Since the display system contains its
own refresh buffer and controller, flicker-free displays
of several thousand vectors are possible regardless of
the rate at which the displayed picture is updated by the
host computer.

User interaction with the display is through the
manipulation of several interactive devices connected
directly to the display system. These include a two-
dimensional data tablet, eight continuous rotation
control dials, two three-dimensional action joysticks, a
bank of 16 toggle switches and incandescent lamps and
an alpha-numeric keyboard. The exact function of all
the devices is dependent upon the control program
executing in the host computer.

The Picture System 2 thus makes it possible to
generate complex line drawing pictures and to
transform these pictures rapidly. In rnolecular
modeling this entails generating a series of vectors
representing the bonds between atoms, optionally
labeling the end points of the vectors with atom name
or group identification, and spatially orienting the
picture to the desired viewing position. This last
function is repeated many times each second so that by
using the control dials or joysticks the picture may be
manipulated to any new position on the viewing screen.
By entering commands on the keyboard, selected parts
of a molecule may be made visible or singled out for
further manipulation (such as local rotations around
selected atomic bonds). The current implementation of
application software allows up to four independent
models to be displayed simultaneously.

The host processor for the graphics system is a
Digital Equipment Corporation PDP-11/70 computer,
currently equipped with 448 Kbytes of main memory.
Several pieces of additional hardware have been
acquired specifically to complement the high
performance graphics display. These include a 300
Mbyte disk drive (35 msec average access with 1.2
Mbyte/sec transfer rate), 1 Mbyte of bulk core storage
configured to appear as a fixed head disk to the central
processor (10/.,sec access, 1 Mbyte/sec transfer rate), a
16 line direct memory access asynchronous multiplexer
for terminal support, a high speed electrostatic
printer/plotter and a variety of other peripherals. A
4800 baud synchronous communications dial-up link to
a Control Data Corporation 7600 computer at Lawrence
Berkeley Laboratory for remote job entry of large scale

numerical calculations has also been implemented to
provide additional computational support.

The decision to use the UNIX operating system s,6
for all program development and support of the
graphics display system was made early in the design

phase of the laboratory. The reasons are multifold:
UNIX provides a friendly and efficient environment
that is highly productive for program development and
documentation', a rich set of programming languages is
available for use so that there is no hesitation about
choosing another language if a particular application
justifies it; the system itself is written almost entirely in
a high level language thus making it easy to
understand, maintain and modify; and, finally, UNIX is
a very popular system not only at Bell Laboratories but
among colleges and universities, particularly at
departments of computer science, thus assuring its
longevity and inspiring an active user community to
cultivate exchange of ideas and programs
Disadvantages of choosing UNIX were primarily

(i) no support of the Evans & Sutherland (or any
other commercially available) high performance
graphics display system and,

(ii) the potential problems associated with supporting
an interactive graphics process in a time-sharing
environment.

Reviewing our decision two years later has produced
the overwhelming conviction that UNIX was far and
away the best choice.

UNIX represents a rather radical departure from
previously available mini-computer operating systems.

Of the approximately 10,000 lines of code that make up
the kernel, over 9,000 of them are written in the C
programming language 7 developed at Bell Laboratories
C provides many of the capabilities of high levb
languages while allowing the programmer contact with
the elementary architecture of the computer ('register'
is a fundamental data type, for instance). This allows
much of the power, flexibility, and efficiency normally
associated only with assembly language programming
while keeping the program structure, data structure,
and diagnostic features found in high level languages.
Code generated by the C compiler is efficient and
modest in memory requirement -- important
advantages both to operating systems and high
performance graphic subroutines.

Evans & Sutherland provides no support for their
graphics hardware under UNIX. Thus, the first major
programming project was to develop a set of
subroutines for use with the Picture System 2. It was
decided that while most of the features available with
the subroutine package that Evans & Sutherland did
provide (for use with DEC's RT-11 and RSX-11M

operating systems) were desirable, it would be difficult
to transport these to UNIX since they were written
entirely in assembly language, and were both complex
and dilfificult to understand. In addition, the existing
subroutines were based on an earlier model of the
Picture System 2 display and did not provide for some
of the more powerful features available with the
current display hardware. We therefore rewrote all the
graphic subroutines in the C language, implementing
the additional routines necessary for the advanced
hardware features and correcting some of the more
dubious design choices in the original routines. This
project was undertaken in the spring of 1977 in
collaboration with the Chemistry Department
Computer Facility of the University of California, San
Diego. (That facility is also running under UNIX and
was interested in converting their early model Picture
System from RT-11 to UNIX during the same time
period.)

The "Graphics Subroutine Package" development
project has been highly successful. 8 This package is not
only a fraction of the size of the original source
listings, but is also much more understandable and
hence maintainable. In addition, several efficiency
enhancements have been made to improve throughput
as well as to support the additional hardware features of
the Picture System 2.

The entire set of routines (about 70 in all) is
organized in a three-level hierarchal fashion and
consists of approximately 4700 line of code, only 400
of which are written in assembly language. (These
later routines are necessary either because of
peculiarities in the PDP-11 instruction set or because
the ultimate in execution speed is desirable). The
three levels consist of

(i) a well defined user interface which is functionally
divided into a basic set of device independent
routines,

(ii) a set of routines intended for use internally by
the above functions which implement low-level
procedures and form the device dependent
interface, and

(iii) a system level device driver.

(For an excellent discussion on the design principles of
a graphics subroutine package see reference 9.)

The user interface consists of sets of routines to
implement graphics primitives, windowing functions,
transformation functions, picture segmentation
functions, and input functions. Graphics primitives
include the procedures used to specify the lines, dots,
characters, etc. that actually make up the picture.
Several similar procedures provide the user with a
flexible and comprehensive means of specifying the

most common functions. For instance, lineto(x,y),
lme(dx, dy), and draw2d(array, hum) are all routines
for drawing a straight line. However, in the first cal
the x,y pair are absolute coordinates, in the second they
are coordinates relative to the current position, and in
the last call they are part of an array of x,y coordinate
pairs, either absolute or relative (distinguished by an
additional parameter). Thus the user may choose
which routine best suits the given data and need not be
concerned with translating the data into the "correct"
representation for a particular subroutine call.

The low level internal procedures include such
functions as the buffering of display commands and
data in orddr to decrease the amount off overhead
associated with UNIX system calls. The technique
involves declaring an array to hold data from several
system calls and then passing the array of data with one
call. With the potential for a large number of small
word count data transfers to the Picture System, this
mechanism saves a substantial amount of system
overhead. (Even on the PDP-11/70 each UNIX

system call takes a minimum of 320 ~sec.) This level
of functionality is incorporated into the software
package in such a way as to be transparent to the user.
Once the location and size of the wriW buffer data array
is declared the display routines invisibly buffer output
to the Picture System, flushing the buffer whenever
necessary.

Not all user callable routines are device
independent, however. While this may be undesirable
from a portability point of view, it allows many of the
powerful display hardware capabilities to be fully
utilized. The ability to process commands and data
through the Picture System 2 MAP at full hardware
speed and then read back all or selected special portions
of the transformed data coordinates for further
calculations (such as interatomic distances or bond

angles) is an example of such a routine. This powerful
feature is used extensively by some of the molecular
modeling programs. 1°1214

Probably the most important aspect of the new
graphic subroutine package is its syntactic compatibility
with the Evans & Sutherland version. In particular,
much of the same user's manual ~ is used as reference
for both the UNIX version and the Evans & Sutherland
version. There are minor exceptions to this, most of
which are due to either the time-sharing nature of
UNIX, the subroutine calling linkage details of the C
language, or to take more advantage of hardware
capabilities. The compatibility aspect, however, is
important both in easing the burden of support
documentation and in providing a smooth transition for
other Picture System 2 installations moving to the

323

UNIX operating system.{} User documentation for the
new package consists of supplying the standard Evans
& Sutherland User's Manual along with about a dozen
and a half replacement pages to reflect the new or
changed features.

The UNIX/PS2GSP has been the foundation of
several major user application programs for use in
displaying and manipulating molecular models. These
include the Molecular Interactive Display System
(MIDS) 12 Protein Interactive Graphics System
(PIG) 13 and Picture Builder (Bild).14 Each of these is a
large multi-process program that is used on a
production level basis during normal laboratory hours
on a system otherwise lightly to moderately loaded with
other users performing program development and text
editing. There is a noticeable impact on system
throughput and performance when an interactive
graphics program is running, but the degradation is
more than tolerable for the other users and
demonstrates both the efficiency of the overall system
and the successfulness of a multi-user configuration
even when a high performance interactive graphics
display is in use.

All of the work described so far was done within
the confines of the standard version of the UNIX
operating system. For those readers unfamiliar with
UNIX, reference 6 provides an in depth description of
the UNIX system, ranging from the operating system
internals on up through several application programs.
Briefly, UNIX is a powerful and compact multiuser
operating system available for the DEC PDP-11 series
of minicomputers. (UNIX als0 now operates on the
Interdata 8/32 and the DEC VAX-11/780 computers.)
The system supports a wide variety of high level
programming languages and presents a friendly and
highly productive environment for the user. As
previously mentioned, the system itself is written in
the C programming language and hence is easy to
maintain and modify. Thus, the Picture System 2 was
interfaced to the system through an ordinary device
driver (albeit large in size but written, in the C
language, of course) in much the same way as any
other peripheral device driver. In order to gain
increased performance from the entire configuration,
however, several extensions were made to both the
UNIX software and the PDP-11/70 hardware
configuration.

The most important of these extensions has been
to the UNIX process scheduler. In order to provide
consistent and reliable "real-time" response for the

§ There are currently six other installations
utilizing tile software subroutines developed at our
laboratory in a variety of applications.

currently executing graphics process, the scheduler was
modified to treat this process in a special way.

Real-time is taken here to mean quick enough and
frequent enough response to provide smooth user
interaction with the graphics display. Since the Picture
System 2 hardware handles refresh of the display
screen automatically, only the picture update rate is of
concern. An update rate of 15-20 frames per second is
adequate to provide smooth motion of the displayed
picture. Thus, the host cpu must schedule the graphics
process for execution at a minimum of every 40-70
msec.

UNIX allows some modification of user process
priority within a limited range (the nice(...) system call)
to provide both "background" and "high priority"
processes in the normal time-sharing environment.
This standard mechanism proved unacceptable for use
with interactive graphics, since occasionally the graphics
process did not receive control of the cpu often
enough, leading to momentary hesitations and "jitter"
of the displayed picture. This was very distracting to
the user and contributed to a loss of synchronization
between the change in values from the interactive
devices controlled by the user and subsequent change
in the displayed picture. Cause of this decreased
response time was typically due to the execution of a
higher priority "kernel mode" process.

[In UNIX a kernel process cannot be
asynchronously preempted. That is, a process which is
executing in kernel mode cannot be arbitrarily
suspended by another higher priority process (distinct
flom a hardware interrupt). This strategy vastly
simplifies the data concurrency problems that have
frequently plagued other operating systems.]

The enhancements to the system process
scheduler are in three distinct areas. The first and most
obvious is to insure that the graphics process is never
swapped out of main memory. This is a
straightforward modification since the mechanism to
accomplish this is already utilized by another process in
the UNIX system. A bit in the per process data
structure ("SSYS'? indicates that a process (normally
only the system's swap scheduler) is not eligible for
swapping. A new system call (rip(...)) was added that
sets this bit for the currently executing process,
providing it has the necessary privileges, of course.
This in itself does not guarantee that the graphics
process is always core resident, since the dynamic stack
allocation mechanism in UNIX may require that a
process be swapped out in order to satisfy additional
memory requirements, but it does guarantee that the
graphics process is not swapped out in order that
another arbitrary process can execute, regardless of its
priority.

The second modification, implemented with the
same rq)(...) system call, sets a flag indicating to the
UNIX process scheduler that the currently executing
process is to be considered a "real-time" process and is
to receive top priority when scheduling the cpu.
Additional code was added in the process scheduler
that tests this flag (actually a pointer to the entry in the
process table of the "real-time process") and executes
the privileged process whenever it is in a runnable
condition. Since the display system hardware and
Picture System 2 device driver provide the necessary
timing for the selected 15-20 frames per second update
rate, the graphics process is synchronized with the
updates of the display picture and executes only at the
selected rate. As long as the graphics process does not
utilize 100% of the available cpu cycles (not even
feasible, since I/O within UNIX is synchronous in
nature), excess cpu time is available fbr other users.
This technique has been very successful and provides
nearly all the real-time scheduling requirements needed
to support interactive graphics in our time-sharing
environment.

Occasional problems did still arise with the
original modifications detailed above, however. At
times, random pauses and hesitations of the otherwise
smoothly changing picture were sometimes noticed,
particularly during periods of heavy operating system
activity. This indicated that occasionally the graphics
process was still not receiving control of the cpu often
enough to meet the picture update requirements. After
much time consuming detective work, the cause of this
problem was located and corrected.

It was mentioned above that the UNIX kernel is
not preemptable. This means that if a kernel mode
process executes for an extended period of time, other
processes (in particular the interactive graphics process)
will have their execution delayed. Two routines within
UNIX, "COl)yseg(...)" and "clearseg(...)'; have the
potential for consuming relatively large amounts of cpu
time. These routines are used to move and clear,
respectively, blocks of memory in the user's address
space. Since the PDP-11 instruction set does not
provide an efficient block move instruction, these
routines are relatively slow (approximately 1 ms per
512 byte memory block). Both of these routines are
called quite often within UNIX in order to create new
processes and to dynamically manage stack and data
segments in existing processes. If a relatively large
amount of memory space is involved, the execution of
these two routines interferes with the interactive
graphics process and ultimately causes undesirable
effects on the displayed picture.

The solution to this last scheduling problem is to
introduce a new concept into UNIX ~ that of an

"interruptable" kernel mode process. (Interruptable in
terms of allowing a process context switch to take
place, even when the processor is executing in kernie

mode.) This concept was implemented in a non-general
way (i.e. only copyseg(...) and clearseg(...) were
involved), requiring few new lines of code (70 in C
and 35 in assembler), and yet satisfactorily addresses
the aforementioned problem. Our installation can now
support an interactive graphics process in an otherwise
busy system with no degradation of performance to the
graphics display (see figure 2).

Some other important features have been added
to our Picture System 2/UNIX system to improve
system performance in areas other than those
previously mentioned. While these other features were
added specifically to improve performance with respect
to our graphics display, they are fairly general purpose
and not limited only to graphics applications. They can
be categorized as improvements in I/O throughput and
program size limitations.

Normal bulk input/output data transfers in the
UNIX environment fall within one of two categories:
the standard, system buffered, record length
independent, file access method, and an alternative
"raw" I/O access method. Raw I/O is normally
reserved for special usage of a standard device (such as
reading a foreign magnetic tape) o1" to bypass the
standard buffering mechanism for a special device
(such as the PS2 display system). Normal access to the
UNIX file system is always through a system buffer,
leaving the details of mapping of logical file blocks to
physical disk blocks entirely at the hands of the
operating system. The disadvantage of this technique
is a reduction in I/O bandwidth compared to the speeds
the hardware is capable of.

In order quickly to access large amounts of data
for new picture displays, a simple user interface was
developed to facilitate large contiguous data transfer to
and from disk storage using the "raw" I/O access
mechanism. This consists of providing a set of user
routines for the management of disk storage within a
specified area on the standard system disk, and the
inclusion of a special "indirect" device driver module
to both "re-map" physical disk address translations and
provide for exclusive use of the special disk areas
assigned for this purpose. This technique provides for
both direct data transfer to/from a user buffer (thus
avoiding the cpu time required to copy the data from a
system buffer) and allows for large multiblock transfers
to/from disk, minimizing head seeking and per-block
interrupt processing time and allowing transfers to
proceed at full hardware speed.

The user subroutines provide functions very
similar to the standard UNIX openO, readO, seekO, and

.~25

writeO primitives and maintain a least-recently-used
buffer pool. Both the total size and the block transfer
size of the buffer pool are specified by the user during
initialization. On our system disk we have allocated ten
special "bulk storage" data areas, each four cylinders
in size. This provides 1.2 Mbytes of storage for each
area, with an average access time of 18 ms (assuming
the disk is not busy processing other requests) and a
data transfer rate of 1.2 Mbytes per second. Since user
programs require little modification to use the new I/O
routines, it is not necessary to design features into new
programs in order to take advantage of the fast access
bulk storage files. Programs can be originally written to
use the standard UNIX file access primitives and
upgraded to the new method only after it is determined
that I/O throughput is too slow. Currently, MIDS and
some movie making routines are the only programs
utilizing the bulk storage data files.

[It is noted in passing that special considerations
must be given to Unibus I/O transfer rates on the
PDP-11/70 computer. This model processor is
substantially different than other members of the
PDP-11 family in the architectural design of the
Unibus to main memory interface and is not capable of
aggregate transfer rates greater than 1.0 Mbytes per
second, is In addition, direct memory access output
transfers over the Unibus update the contents of high
speed cache memory ("cache wiping") and thus slow
the execution of programs. Extensive measurements
have been performed on both of these, but their
presentation is beyond the scope of this paper. Note
that the above comments apply only to the PDP-11/70
Unibus and that I/O transfers via the Massbus do not
have the same limitations.]

Another hardware enhancement to speed overall
system throughput has been the addition of an
"extended core storage" device. This actually consists
of 1 Mbyte of 10 tzsec access bulk core memory
configured to appear to both the processor and UNIX
as a fixed head disk drive. This device nicely fills the
gap in memory system hierarchy between main
memory and moving head disk storage. It is used to
store frequently accessed system data (the " root" file
system and program temporary files) and has been
conveniently integrated into the rest of the system.
This includes some trivial modifications to account for
this device's very fast access time and thus avoid the
normal buffer caching mechanism present in UNIX.
The overall result is faster system response time and
reduced impact when the high performance graphics
display is in use.

A major limitation to 16 bit minicomputer
architecture is in the amount of memory directly
addressable by a program at any one instant. On the

PDP-11 series of computers this is generally a total of
64 Kbytes, but the memory management unit in the
PDP-11/45 and 11/70 has the ability to separate
programs into instruction segments and data segments,
each segment capable of directly referencing 64K bytes
of memory.

Four PDP-11 instructions facilitate program
communication between different addressing modes
and instruction/data areas in memory. These are
"move to/from previous instruction/data memory
space" (mtpi, ~pi, mtpd and mfpd).

Unfortunately, because of DEC's desire to "...
preserve the integrity of proprietary programs ''17, the
mJoi instruction does not function correctly when a user
is attempting to access data in his own instruction
segment of memory with "separated I&D" mode
active. Because of the details of C subroutine calling
linkage, this makes it impossible for a user subroutine
to determine the actual number of arguments passed
when optional arguments are possible. This is not a
problem when separated I&D mode is not active, and a
standard routine (nargsO) can be called to determine
the number of arguments passed to the called
subroutine (of course the addressable program memory
space is limited to the usual total of 64K bytes in this
case).

There are a number of solutions to this deficiency
that still allow programs to utilize separated I&D space,
among these are:

(i) Insist that the user supply as the first argument in
a subroutine call the actual number of real
arguments being passed.

(ii) Implement a new UNIX system call to execute
the mp~ instruction. (The instruction functions
correctly when executed in kernel mode and is
used extensively by UNIX to fetch and store date
between user programs and the operatin~
system.)

(iii) Modify the C compiler to generate an argumenl
count on every subroutine call.

(iv) Modify UNiX to use the supervisor mode
memory management registers in a way differen~
to that which is done currently.

(v) Modify the cpu hardware to work more
"correctly".

The first approach was straightforward but quickb
discarded since it meant both introducing a majoJ
incompatibility between the Evans & Sutberland ant
UNIX version of the graphics software package (E&5~
does not support programs with separated I&I2
segments) and also the potential for user programming
errors should the incorrect number of arguments be

326

specified.

The second approach was easiest to implement
but proved unacceptable because of the overhead
associated with system calls', 16 each UNIX system call
takes, as previously noted, a minimum of 320
microseconds of cpu time (for a PDP-11/70 with
cache) and the ~mrgsO routine has the potential for
making at least two, and often three or more, of these
time consuming calls. In our real-time environment
this approach was prohibitively slow and had to be
abandoned. The third and fourth approaches were
unattractive since they meant sacrificing software
compatibility and standardization with other
installations.

The approach finally decided upon also turned out
to be rather trivial to implement once the proper
section of logic was located in the central processor.
The modification takes about 15 minutes to perform
and involves simply cutting one printed circuit foil
"e tch" and adding a single jumper wire to the PDP-
l l /70 memory management controller (see figure 3).
This change allows the n¢/))i instruction to execute
correctly under all cortditions, and an addition to the
original nargsO routine that utilizes this 'qaew"
instruction when a program is rtmning in separated
I&D mode removes any previous restrictions associated
with subroutines which have a variable number of
arguments. This facility is used extensively by many of
the real-time graphic display programs which typically
have both a large program instruction segment and a
large "display list" data segment and would normally
not fit within the confined addressing space of a 16 bit
minicomputer.

Conclusion:

The University of California, San Francisco
Computer Graphics Laboratory is a relatively young
facility (2% years old), which began its mission by
"building from the ground up" with both new,
unproven hardware (we were the first to receive
delivery of a Picture System 2 in the United States)
and previously non-existent application programs in the
new field of interactive computer graphics for drug
design. Despite this beginning disadvantage, we have
enjoyed a remarkable degree of success and are using
the system on a daily production basis. Much of this
can be attributed to the excellent environment
provided by the UNiX operating system and the C
programming language. The relatively simple
modifications and extensions to the standard UNiX
system provide the additional efficiency required
without sacrificing the simplicity and elegance that have

become a trademark of UNIX philosophy. The entire
complement of high performance hardware, provided
by over a dozen different vendors, has been very
reliable and contributed much to the level of success.
Emphasis has been placed on ease of use of interactive

three-dimensional computer graphics as a powerful tool
in molecular modeling and drug design and the
resulting friendly environment is enjoyed by many
individuals having no previous experience with
computers. The system is already in extensive use at a
variety of scientific research levels and popularity is
growing steadily. This in turn is making increased
demands for new program development, development
that can. proceed in parallel with production use because
of the time-sharing environment provided by UNIX
This has become more than just a desirable mode of
operation, it is now a necessity.

Acknowledgements:

Work supported in part by National Institutes of
Health, Division of R.esearch Resources Grant No.
RR-1081. We are grateful to A.I. Wasserman for his
many helpful criticisms and to J.E. Apodaca for her
help in preparing the manuscript and figures. The text
was prepared entirely on the UNIX time-sharing system
utilizing software from Bell Laboratories, University of
California, Berkeley and University of Toronto.

References:

(1) Feldmann, R.J. The Design of Computing
Systems for Molecular Modeling. Annual Review
of Biophysics and Bioengineering 5, 477-510
(1976).

(2) Langridge, R. Interactive Three-Dimensionh
Computer Graphics in Molecular Biology. In
Computers m Lile Science Research, Plenum
Publishing Corp., pp. 53-59 (1975).

(3) Levinthal, C. Molecular Model-Building by
Computer. Sci. Amer. 214, 42-52 (1966).

(4) Picture System 2/PDP-11 Reference Manual
Evans & Sutherland Corporation, P.O. Box 8700,
Salt Lake City, Utah 84108, Document
#901130-001 A1, November 1977.

(5) Ritchie, D.M. and Thompson, K. The UNIX
Time-Sharing System. Comm. of the ACM
17(7): 365-375, July 1974.

(6) Luderer, G.W.R., Maranzano, J.F. and Tagne,
B.A. The UNIX Operating System as a Base for

327

Applications. Bel l System Technical Journal
57(6): 2201-2207, July-August 1978.

(7) Kernighan, B.W. and Ritchie, D.M. The C
Programming Language. Bell Laboratories,
Murray Hill, New Jersey. Prentice-Hill, Inc.,
Englewood Cliff, New Jersey, 1978.

(8) The UNIX Picture System 2 Graphics Subroutine
Package is available free of charge to anyone
possessing a valid license from Western Electric
for the UNIX Time-Sharing System. To arrange
for distribution please contact the authors.

(9) Newman, W.M. and Sproull, R.F. Principles of
Interactive Computer Graphics. Second Edition,
McGraw-Hill, New York, pp. 79-90 (1979).

(10) Ferrin, T.E. Write-Back to Memory Subroutine
Description, UNIX/PS2 Graphics Subroutine
Package, Internal Memo, 1978.

(11) Picture System 2 User's Manual. Evans &
Sutherland Corporation, P.O. Box 8700, Salt Lake
City, Utah 84108, Document #901129-001 NC,
May 1977.

(12) Ferrin, T.E., Pensak, M. and Huang, C. MIDS:
The Molecular Interactive Display System User's
Manual, Version 2.6. Internal Memorandum,
University of California, San Francisco, 21 July
1978.

(13) Jones, O.E. Protein Interactive Graphics User's
Manual. Internal Memorandum, University of
California, San Francisco, 19 July 1978.

(14) Jones, O.E., Hack, P. and Beutel, T. BILD - A
Tutorial Introduction; Three-Dimensional Picture
Drawing by Computer. Internal Memorandum,
University of California, San Francisco, 7 July
1978.

(15) PDP-11/70 Architectural Description. Internal
Technical Memorandum, Digital Equipment
Corporation, Maynard, Massachusetts 01730,
1977.

(16) A solution to reducing potential system call
overhead associated with the nargsO subroutine
has been proposed in a personal communication
with Torn Duff from the New York Institute of
Technology. This involves keeping a most
recently accessed list of program counter values
and the associated number of arguments to the
called subroutine, the latter determined through a
system call. The next call to the same subroutine
from the same program location can then avoid
the system call and quickly determine the number
of subroutine arguments by searching the above
list.

(17) KBll-C Processor Manual (PDP-11/70). Digith
Equipment Corporation, Maynard, Massachusetts
01730, Document #EK-KBllC-TM-001, pg. IV-
3-5, 1975.

Figure 1: Picture System 2 schematic diagram. Some components, most notably the PS2 interface and
matrix arithmetic processor, have the ability to function in either an active or passive mode of
operation and thus provide overall system flexibility.

Figure 2: Process response time. Shown is the response time for a high priority process running in a
multiuser UNIX environment. In the top figure the process priority was controlled using the
standard UNIX mceO system call to adjust the process' priority to a low value and therefore
schedule its execution before other users. In the bottom figure the process used the newly added
rtpO system call to guarantee it the quickest possible response time. (Courtesy of M Wallen,
University of California, San Diego).

Figure 3: Modifications for mpfi instruction. A special circuit in the PDP-11/70 memory management
control unit (module # M8138-YA, "System Status Register (SSRB)") was defeated to allow more
logically consistent instruction execution,

Generator

!"-"---1 -";7;- ' i .°,r.h
J PDP- 11 l AFRhrnetic I Controller ~ j ~

picture Sy=stern 2 Data ~ . ~ . ,~
! /

I Dials & I ~ Switches & I
_ _ . L L J

329

1 5 0 . 0

O

0

1 0 0 . 0

5 ~ . 0

0.0
3 0 1 ~ . 0 6 0 1 ~ . 0 9 0 0 .

Sample Number

1 5 0 . 0

O0

o

100. 0

50. 0

0 . 0 3 0 0 . 0 6 ~ 0 . 0 9NID. 0

S a m p l e N u m b e r

330

1 . Cut priuted circuit foil...,~.._

IRCC MFP+MTP |-I BL1)
SSRB P MODE=USER , 11 11 -

ss.B usER MOOE ~ 1_...~-~,~.~..~8 SS.B O S E . Z O S E . ~ SS.B
,RCA ,RO7(O)H,~ AI) 10] EIB ~ SSRA +~ / ,~ ,4~ , -~ E 11 J

/
2. Jumper integrated circuit p i n s /

ENBL IF NOT U/U H

331

