#!/usr/bin/python3 # Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Docker launch script for Alphafold docker image.""" import os import pathlib import signal from typing import Tuple from absl import app from absl import flags from absl import logging import docker from docker import types flags.DEFINE_bool( 'use_gpu', True, 'Enable NVIDIA runtime to run with GPUs.') flags.DEFINE_boolean( 'run_relax', True, 'Whether to run the final relaxation step on the predicted models. Turning ' 'relax off might result in predictions with distracting stereochemical ' 'violations but might help in case you are having issues with the ' 'relaxation stage.') flags.DEFINE_bool( 'enable_gpu_relax', True, 'Run relax on GPU if GPU is enabled.') flags.DEFINE_string( 'gpu_devices', 'all', 'Comma separated list of devices to pass to NVIDIA_VISIBLE_DEVICES.') flags.DEFINE_list( 'fasta_paths', None, 'Paths to FASTA files, each containing a prediction ' 'target that will be folded one after another. If a FASTA file contains ' 'multiple sequences, then it will be folded as a multimer. Paths should be ' 'separated by commas. All FASTA paths must have a unique basename as the ' 'basename is used to name the output directories for each prediction.') from os import getcwd flags.DEFINE_string( 'output_dir', getcwd(), 'Path to a directory that will store the results.') flags.DEFINE_string( 'data_dir', '/home/goddard/ucsf/databases/alphafold21', 'Path to directory with supporting data: AlphaFold parameters and genetic ' 'and template databases. Set to the target of download_all_databases.sh.') flags.DEFINE_string( 'docker_image_name', 'alphafold220', 'Name of the AlphaFold Docker image.') flags.DEFINE_string( 'max_template_date', '2100-01-01', 'Maximum template release date to consider (ISO-8601 format: YYYY-MM-DD). ' 'Important if folding historical test sets.') flags.DEFINE_enum( 'db_preset', 'full_dbs', ['full_dbs', 'reduced_dbs'], 'Choose preset MSA database configuration - smaller genetic database ' 'config (reduced_dbs) or full genetic database config (full_dbs)') flags.DEFINE_enum( 'model_preset', 'monomer_ptm', ['monomer', 'monomer_casp14', 'monomer_ptm', 'multimer'], 'Choose preset model configuration - the monomer model, the monomer model ' 'with extra ensembling, monomer model with pTM head, or multimer model') flags.DEFINE_integer('num_multimer_predictions_per_model', 1, 'How many ' 'predictions (each with a different random seed) will be ' 'generated per model. E.g. if this is 2 and there are 5 ' 'models then there will be 10 predictions per input. ' 'Note: this FLAG only applies if model_preset=multimer') flags.DEFINE_boolean( 'benchmark', False, 'Run multiple JAX model evaluations to obtain a timing that excludes the ' 'compilation time, which should be more indicative of the time required ' 'for inferencing many proteins.') flags.DEFINE_boolean( 'use_precomputed_msas', False, 'Whether to read MSAs that have been written to disk instead of running ' 'the MSA tools. The MSA files are looked up in the output directory, so it ' 'must stay the same between multiple runs that are to reuse the MSAs. ' 'WARNING: This will not check if the sequence, database or configuration ' 'have changed.') flags.DEFINE_string( 'docker_user', f'{os.geteuid()}:{os.getegid()}', 'UID:GID with which to run the Docker container. The output directories ' 'will be owned by this user:group. By default, this is the current user. ' 'Valid options are: uid or uid:gid, non-numeric values are not recognised ' 'by Docker unless that user has been created within the container.') FLAGS = flags.FLAGS _ROOT_MOUNT_DIRECTORY = '/mnt/' def _create_mount(mount_name: str, path: str) -> Tuple[types.Mount, str]: """Create a mount point for each file and directory used by the model.""" path = pathlib.Path(path).absolute() target_path = pathlib.Path(_ROOT_MOUNT_DIRECTORY, mount_name) if path.is_dir(): source_path = path mounted_path = target_path else: source_path = path.parent mounted_path = pathlib.Path(target_path, path.name) if not source_path.exists(): raise ValueError(f'Failed to find source directory "{source_path}" to ' 'mount in Docker container.') logging.info('Mounting %s -> %s', source_path, target_path) mount = types.Mount(target=str(target_path), source=str(source_path), type='bind', read_only=True) return mount, str(mounted_path) def main(argv): if len(argv) > 1: raise app.UsageError('Too many command-line arguments.') # You can individually override the following paths if you have placed the # data in locations other than the FLAGS.data_dir. # Path to the Uniref90 database for use by JackHMMER. uniref90_database_path = os.path.join( FLAGS.data_dir, 'uniref90', 'uniref90.fasta') # Path to the Uniprot database for use by JackHMMER. uniprot_database_path = os.path.join( FLAGS.data_dir, 'uniprot', 'uniprot.fasta') # Path to the MGnify database for use by JackHMMER. mgnify_database_path = os.path.join( FLAGS.data_dir, 'mgnify', 'mgy_clusters_2018_12.fa') # Path to the BFD database for use by HHblits. bfd_database_path = os.path.join( FLAGS.data_dir, 'bfd', 'bfd_metaclust_clu_complete_id30_c90_final_seq.sorted_opt') # Path to the Small BFD database for use by JackHMMER. small_bfd_database_path = os.path.join( FLAGS.data_dir, 'small_bfd', 'bfd-first_non_consensus_sequences.fasta') # Path to the Uniclust30 database for use by HHblits. uniclust30_database_path = os.path.join( FLAGS.data_dir, 'uniclust30', 'uniclust30_2018_08', 'uniclust30_2018_08') # Path to the PDB70 database for use by HHsearch. pdb70_database_path = os.path.join(FLAGS.data_dir, 'pdb70', 'pdb70') # Path to the PDB seqres database for use by hmmsearch. pdb_seqres_database_path = os.path.join( FLAGS.data_dir, 'pdb_seqres', 'pdb_seqres.txt') # Path to a directory with template mmCIF structures, each named .cif. template_mmcif_dir = os.path.join(FLAGS.data_dir, 'pdb_mmcif', 'mmcif_files') # Path to a file mapping obsolete PDB IDs to their replacements. obsolete_pdbs_path = os.path.join(FLAGS.data_dir, 'pdb_mmcif', 'obsolete.dat') alphafold_path = pathlib.Path(__file__).parent.parent data_dir_path = pathlib.Path(FLAGS.data_dir) if alphafold_path == data_dir_path or alphafold_path in data_dir_path.parents: raise app.UsageError( f'The download directory {FLAGS.data_dir} should not be a subdirectory ' f'in the AlphaFold repository directory. If it is, the Docker build is ' f'slow since the large databases are copied during the image creation.') mounts = [] command_args = [] # Mount each fasta path as a unique target directory. target_fasta_paths = [] for i, fasta_path in enumerate(FLAGS.fasta_paths): mount, target_path = _create_mount(f'fasta_path_{i}', fasta_path) mounts.append(mount) target_fasta_paths.append(target_path) command_args.append(f'--fasta_paths={",".join(target_fasta_paths)}') database_paths = [ ('uniref90_database_path', uniref90_database_path), ('mgnify_database_path', mgnify_database_path), ('data_dir', FLAGS.data_dir), ('template_mmcif_dir', template_mmcif_dir), ('obsolete_pdbs_path', obsolete_pdbs_path), ] if FLAGS.model_preset == 'multimer': database_paths.append(('uniprot_database_path', uniprot_database_path)) database_paths.append(('pdb_seqres_database_path', pdb_seqres_database_path)) else: database_paths.append(('pdb70_database_path', pdb70_database_path)) if FLAGS.db_preset == 'reduced_dbs': database_paths.append(('small_bfd_database_path', small_bfd_database_path)) else: database_paths.extend([ ('uniclust30_database_path', uniclust30_database_path), ('bfd_database_path', bfd_database_path), ]) for name, path in database_paths: if path: mount, target_path = _create_mount(name, path) mounts.append(mount) command_args.append(f'--{name}={target_path}') output_target_path = os.path.join(_ROOT_MOUNT_DIRECTORY, 'output') mounts.append(types.Mount(output_target_path, FLAGS.output_dir, type='bind')) use_gpu_relax = FLAGS.enable_gpu_relax and FLAGS.use_gpu command_args.extend([ f'--output_dir={output_target_path}', f'--max_template_date={FLAGS.max_template_date}', f'--db_preset={FLAGS.db_preset}', f'--model_preset={FLAGS.model_preset}', f'--benchmark={FLAGS.benchmark}', f'--use_precomputed_msas={FLAGS.use_precomputed_msas}', f'--num_multimer_predictions_per_model={FLAGS.num_multimer_predictions_per_model}', f'--run_relax={FLAGS.run_relax}', f'--use_gpu_relax={use_gpu_relax}', '--logtostderr', ]) client = docker.from_env() device_requests = [ docker.types.DeviceRequest(driver='nvidia', capabilities=[['gpu']]) ] if FLAGS.use_gpu else None container = client.containers.run( image=FLAGS.docker_image_name, command=command_args, device_requests=device_requests, remove=True, detach=True, mounts=mounts, user=FLAGS.docker_user, environment={ 'NVIDIA_VISIBLE_DEVICES': FLAGS.gpu_devices, # The following flags allow us to make predictions on proteins that # would typically be too long to fit into GPU memory. 'TF_FORCE_UNIFIED_MEMORY': '1', 'XLA_PYTHON_CLIENT_MEM_FRACTION': '4.0', }) # Add signal handler to ensure CTRL+C also stops the running container. signal.signal(signal.SIGINT, lambda unused_sig, unused_frame: container.kill()) for line in container.logs(stream=True): logging.info(line.strip().decode('utf-8')) if __name__ == '__main__': flags.mark_flags_as_required([ 'fasta_paths', ]) app.run(main)